Návod "GON / GON+" - page 34

32
E9b Minimální deviace (GON/GON+)
Minimální deviaci je vhodnější uskutečnit s využitím optického hranolu (26), pro který je připravený i následující
komentář. Při pokusu, uskutečňovaném podle obr. E9.1, pozorujeme při určité hodnotě úhlu dopadu α (který měníme
otáčením hranolu kolem bodu A a odečítáme úhloměrnou stupnicí) minimální hodnotu deviačního úhlu δ. O tom, že
jsme našli právě hodnotu minimální deviace δ min se přesvědčíme tak, že měníme úhel dopadu vzhledem na tu jeho
hodnotu, při které nastala
minimální deviace
. Pro všechny ostatní úhly dopadu (větší nebo menší) je deviační úhel
větší, než je hodnota δ
min
(stopa paprsku na stěně v případě dosáhnutí minimální deviace zůstane stát, v případě
zvětšení či zmenšení dopadu paprsku na hranol se stopa pohybuje stejným směrem - deviační úhel se zvětšuje).
V případě přechodu paprsku hranolem za dosáhnutí minimální deviace vidíme, že paprsek dopadá na hranol
v bodě A a vychází z něho v bodě B pod stejným úhlem (obr. E9.2). Paprsek v tomto případě prochází hranolem mezi
body A a B tak, že je rovnoběžný se stěnou hranolu, kterou neprotíná. Výhodné je pokus realizovat tak, aby body A, B
byly co nejblíže k bodům K, L.
Obr. E9.2
Vyhodnocení pokusu
Při přechodu světelného paprsku skleněným trojbokým hranolem jeho celková odchylka - deviace - závisí od
úhlu dopadu paprsku v bodě A na první lámavé ploše, lámavého úhlu φ hranolu, absolutního indexu lomu n
2
skla,
z kterého je hranol zhotovený a absolutního indexu lomu n
1
okolního prostředí.
V případě dosáhnutí nejmenší odchylky při přechodu světelného paprsku hranolem - minimální deviace δ
min
-
se rovná úhlu dopadu α na první lámavé ploše úhlu lomu β na druhé lámavé ploše. Pro vztah veličin, charakterizujících
optické vlastnosti hranolu (index lomu n a lámavý úhel φ) a okolního prostředí (pro vzduch uvažujeme index lomu rovný
1) platí:
2
sin
2
sin
min
n
Paprsek v tomto případě prochází vevnitř hranolu
rovnoběžně
s hranou, kterou neprotíná, resp. je
kolmý na
osu
lámavého úhlu φ hranolu.
Předcházející vztah je vhodné použít na určení indexu lomu n skla, z kterého je zhotovený hranol. Použitý hranol
má podstavu rovnostranný trojúhelník s lámavým úhlem φ = 60° a pro výpočet indexu lomu skla stačí pokusně zjistit
velikost minimální deviace.
1...,24,25,26,27,28,29,30,31,32,33 35,36,37,38,39,40,41,42,43,44,...69
Powered by FlippingBook